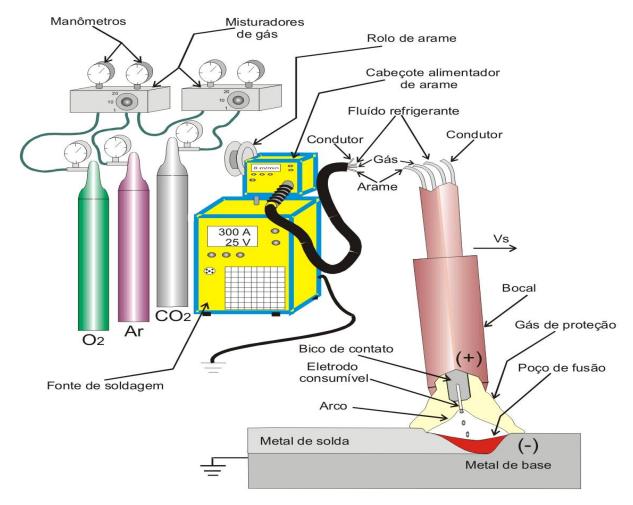
SOLDAGEM - PROCESSO MIG/MAG



Prof°: Filipe Invenzione

A MÁQUINA E SEUS EQUIPAMENTOS / ACESSÓRIOS

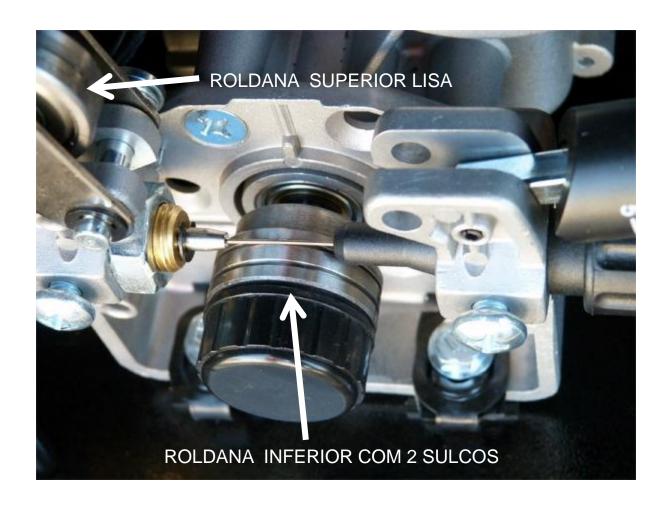
Existem dois tipos de fonte de energia:

Fonte de corrente convencional e Fonte de corrente pulsada

TIPOS DE FONTES

Fonte de corrente convencionais

As fontes convencionais usam um retificador de soldagem, que fornece corrente continua do tipo voltagem constante, esta voltagem normalmente tem como ajuste de 16 a 44 volts na maioria das máquinas.

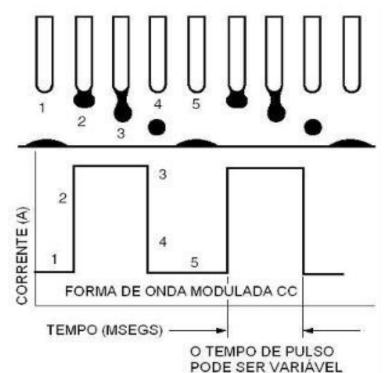


INTERNO

EXTERNO

ROLDANAS

TIPOS DE FONTES


Fonte de corrente pulsada

Este tipo de máquina esta sendo muito usado no processo MIG na soldagem do alumínio e do aço inox. Com este tipo de máquina consegue-se uma transferência do metal no arco, do tipo spray em baixa corrente o que não é possível com as máquinas convencionais que só consegue método spray em altas correntes.

TIPOS DE FONTES

GASES DO AR ATMOSFÉRICO

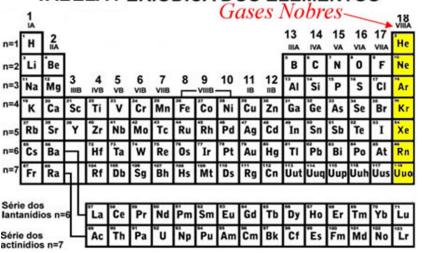
São gases em temperatura ambiente, cuja obtenção industrial via de regra se faz do ar atmosférico. O ar à temperatura ambiente se apresenta no estado gasoso, ou seja, no estado de gás. Se isolarmos em um frasco 100 litros de ar e, em seguida, por um processo qualquer separarmos os gases contidos nesses 100 litros encontraremos aproximadamente:

78 litros de Nitrogênio;

21 litros de oxigênio;

01 litro de argônio e outros gases, tais como: Neônio, Hélio, Criptônio, Xenônio, etc.

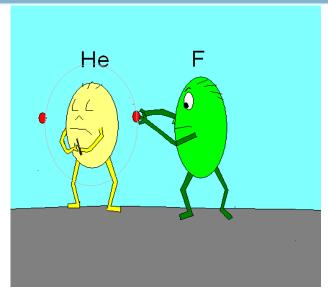
Composição do ar atmosférico


Tipo de gás	Símbolo	% em volume	% em peso
Nitrogênio	N2	78,03	75,66
Oxigênio	O2	20,93	23,13
Argônio	Ar	0,9325	1,2862
Neônio	Ne	0,0018	0,0012
Hélio	He	0,0005	0,00007
Criptônio	Kr	0,0001	0,0003
Xenônio	Xe	0,000009	0,0004
Hidrogênio	H2	0,00005	0,0000036
Dióxido de carbono	CO2	0,03	0,046

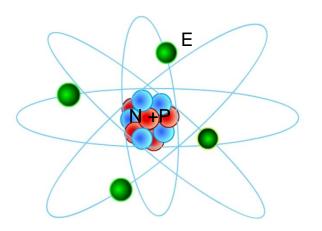
FUNÇÃO DO GÁS DE PROTEÇÃO

Gases	Símbolos	Inerte/ativo
Argônio	Ar	(inerte a qualquer temperatura)
Hélio	He	(inerte a qualquer temperatura)
Gás carbônico	CO ²	(oxidante, ativo)
Nitrogênio	Ni	
		usado em pequenas quantidades na mistura (inerte)
Oxigênio	O ²	usado em pequenas quantidades na mistura (oxidante , ativo)

GASES NOBRES



A diferença desses elementos para os demais é que eles possuem o último nível de energia (camada de valência) completo no estado fundamental. Isso significa ter 2 elétrons na camada de valência quando o elemento tiver apenas um nível (no caso do hélio), ou ter 8 elétrons na camada de valência quando o elemento tiver dois ou mais níveis de energia.


```
Gases Nobres – distribuição eletrônica em ordem geométrica {}_{2}He – {}_{1}s^{2} {}_{10}Ne – {}_{1}s^{2} / {}_{2}s^{2} 2p<sup>6</sup> {}_{18}Ar – {}_{1}s^{2} / {}_{2}s^{2} 2p<sup>6</sup> / {}_{3}s^{2} 3p<sup>6</sup> {}_{3}Kr – {}_{1}s^{2} / {}_{2}s^{2} 2p<sup>6</sup> / {}_{3}s^{2} 3p<sup>6</sup> 3d<sup>10</sup> / {}_{4}s^{2} 4p<sup>6</sup> {}_{54}Xe – {}_{1}s^{2} / {}_{2}s^{2} 2p<sup>6</sup> / {}_{3}s^{2} 3p<sup>6</sup> 3d<sup>10</sup> / {}_{4}s^{2} 4p<sup>6</sup> 4d<sup>10</sup> / {}_{5}s^{2} 5p<sup>6</sup> {}_{86}Rn – {}_{1}s^{2} / {}_{2}s^{2} 2p<sup>6</sup> / {}_{3}s^{2} 3p<sup>6</sup> 3d<sup>10</sup> / {}_{4}s^{2} 4p<sup>6</sup> 4d<sup>10</sup> 4f<sup>14</sup> / {}_{5}s^{2} 5p<sup>6</sup> 5d<sup>10</sup> / {}_{6}s^{2} 6p<sup>6</sup>
```

Um átomo adquire estabilidade quando possui 8 elétrons na camada eletrônica mais externa, ou 2 elétrons quando possui apenas a primeira camada.

GASES NOBRES

Aqueles com menos de 3 camadas (He) só poderiam participar de compostos se perdessem alguns elétrons e se unissem a outros átomos. Entretanto, devido ao pequeno tamanho, esses átomos possuem uma energia de ionização tão elevada que nenhum átomo é capaz de tirar elétrons ou permanecerem ligados a eles, como visto na animação artística ao lado. Nem o Flúor (F), o átomo que tem mais força para arrancar elétrons, é capaz de retirar um elétron de um átomo do gás nobre Hélio.

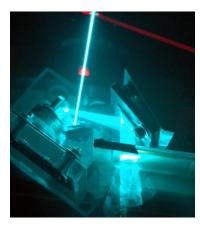
LEGENDA:

P= PRÓTONS;

E= ELÉTRONS;

N= NEUTRÔNS.

Argônio - (Ar)


É um gás raro que constitui menos de 1% da atmosfera terrestre. É extremamente inerte isto significa que ele não forma composto químico com nenhum outro elemento conhecido: portanto, forma uma barreira ideal contra a contaminação atmosférica, em certo número de processos de soldagem (TIG e MIG), evitando em todos eles a oxidação. Aplicações:

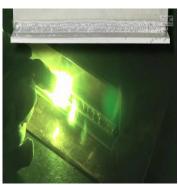
Lâmpadas

Soldagem TIG e MIG

Lasers

Proteção de metais reativos (cálcio)

Hélio - (He)


É o mais leve dos gases inertes. Não tem cheiro. Existe no ar atmosférico em muito menor quantidade que o argônio. É um gás nobre, portanto não forma compostos químicos com outras substâncias. Usado na proteção da solda principalmente na soldagem do alumínio em chapas grossas. Aplicações:

Balões

Mergulhadores

Soldagem Mig Alumínio

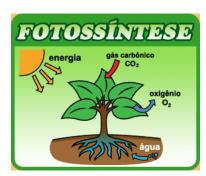
Medicina

Dióxido de carbônico - (CO₂)

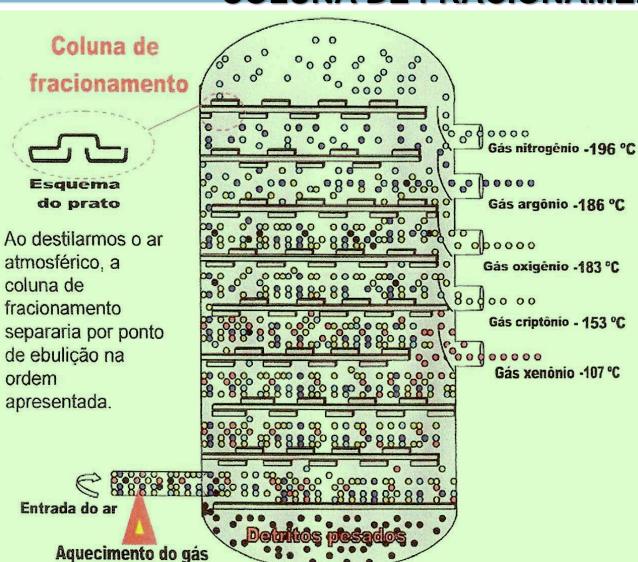
Chamado, antigamente de anidrido carbônico, tem como fórmula química CO2, como a fórmula indica, é constituído de carbono e oxigênio. É um gás de fácil produção e relativamente barato.

O gás carbônico é perigoso?

Ele não tem cheiro, cor, elimina o oxigênio da área, portanto a presença dele em lugar fechado provoca asfixia. Em temperatura ambiente até 46° C ele é inerte, a partir desta temperatura ele começa a reagir, tornando um gás oxidante e ativo, na solda com a temperatura do arco ele sempre vai ser ativo. Aplicçãoes:


Medicina

Bebidas



Soldagem Mag e eletrodo revestido

Plantas

COLUNA DE FRACIONAMENTO

SIGNIFICADO DAS SIGLAS MIG / MAG

MIG

M - Metal

I - Inerte

G - Gás

Usa como proteção do arco elétrico e da poça de fusão, gás inerte ou misturas inertes.

MAG

M - Metal

A - Ativo

G - Gás

Usa como proteção do arco elétrico e da poça de fusão, gás ativo ou mistura de gases.

Gases usados no processo:

Argônio, Hélio, CO2 (dióxido de carbono) e O2.

Gases inertes e ativos

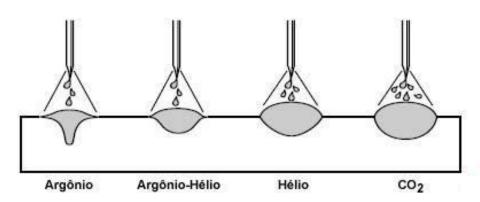
- Gases inertes usados no processo:
- Argônio
- Hélio
- Gases ativos usados no processo:
- CO₂ (dióxido de carbono)
- O₂ (oxigênio)

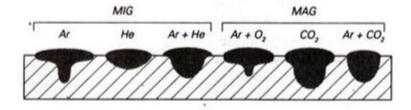
Os gases inertes são aqueles que não combinam (não reagem) com outros elementos, mesmo em alta temperatura.

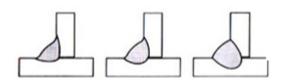
Os gases ativos são os que reagem na poça de fusão com os elementos.

As misturas de gases mais usadas:

Material a soldar	Tipo de gás	Tipo de gás	Método
Aço baixo carbono chapa grossa	-	100% Gás carbônico CO2	Mag
Aço baixo carbono	82% de argônio	18% de Gás carbônico CO2	Mag
Aço baixo carbono	75% de argônio	25% de Gás carbônico CO2	Mag
Aço inoxidável	98% de argônio	02% de oxigênio	Mig
Alumínio	100% Argônio	-	Mig
Alumínio (chapas grossas)	80% de argônio	20% de Hélio	Mig
Cobre e suas ligas	90% de argônio	10% de nitrogênio	Mig

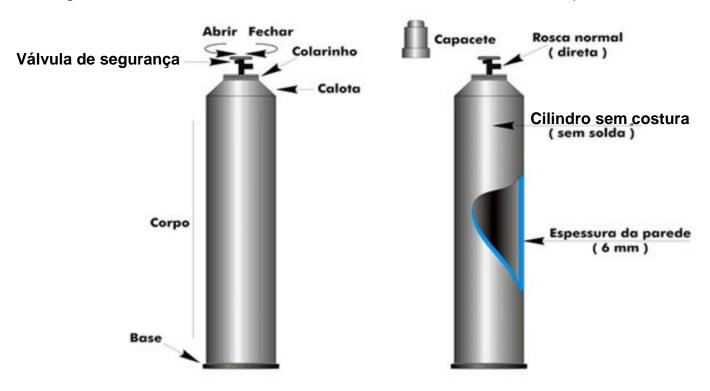

Acima de 5% de CO₂ (ativo) misturado com Argônio (inerte) = Mistura ativa <= 5% de CO₂ (ativo) misturado com Argônio (inerte) = Mistura inerte Acima de 3% de O₂ (ativo) misturado com Argônio (inerte) = Mistura ativa <= 3% de O₂ (ativo) misturado com Argônio (inerte) = Mistura inerte




PENETRAÇÃO E PERFIL DA SOLDA

As figuras abaixo ilustram a influência do gás de proteção na penetração da solda e no perfil do cordão. Tais influências se devem às próprias alterações que ocorrem no arco elétrico.

Penetração padrão por tipo de gás de proteção


RESERVATÓRIOS E TRANSPORTE DOS GASES DE PROTEÇÃO

Cilindro de gás.

Os gases são acondicionados e transportados em vasos de pressão, denominados cilindros. Evite chamar os cilindros de <u>"Garrafa"</u>, "Botijão", "Tubo".

Definições das partes de um cilindro:

Os seguintes termos devem ser usados ao serem mencionados as partes dos cilindros.

PADRONIZAÇÃO DAS CORES DOS CILINDROS

É fácil imaginar as desastrosas conseqüências que podem advir do uso de um determinado gás em lugar de outro. Para evitar que acidentes desse tipo possam ocorrer, os cilindros são pintados, em função do seu conteúdo através de um código de cores, prescritos pela **Norma Brasileira NB 46 da ABNT.**

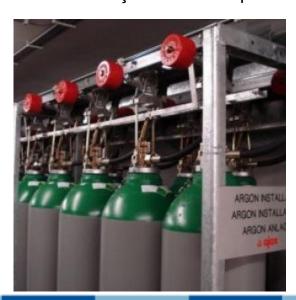
ABNT – NBR 12176 = Associação Brasileira de Normas Técnicas. As cores que identificam os principais gases são:

Tipo de gás	Cor do cilindro	Tipo de gás	Cor do cilindro
Argônio	Marrom	Acetileno	Bordo
Oxigênio industrial	Preto	Hidrogênio	Amarelo
Oxigênio medicinal	Verde	Nitrogênio	Cinza
Hélio	Laranja		
Gás carbônico (CO2)	Alumínio	Misturas de gases	Ouro

RESERVATÓRIOS E TRANSPORTE DOS GASES DE PROTEÇÃO

Grupo 1: não-inflamável, não-corrosivo, baixa toxidez.

Grupo 2: inflamável, não-corrosivo, baixa toxidez.

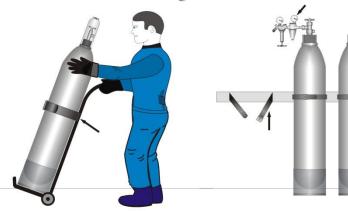

Grupo 3: inflamável, tóxico e/ou corrosivo.

Grupo 4: tóxico e/ou corrosivo, não-inflamável.

Grupo 5: espontaneamente inflamável.

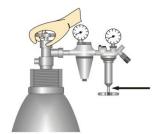
Grupo 6: venenoso.

Ficha de Informações de Segurança de Produtos Químicos (FISPQ): Solicitar a FISPQ para obter maiores informações sobre os possíveis riscos envolvidos na utilização dos produtos.

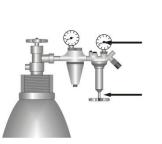


VÁLVULA DO CÍLINDRO

MANIPULAÇÃO ADEQUADA DOS CILINDROS E REGULADORES



Transporte por carrinho.



Fixação dos cilindros e instalação dos reguladores.

Verificação de vazametos

Abertura do cilindro com o manômetro despressurizado.

Regulagem da vazão de trabalho

Proteção termica para os cilindros

 $V = \frac{CXP}{1000}$

ONDE: V= VOLUME;

C= CAPACIDADE EM LITROS;

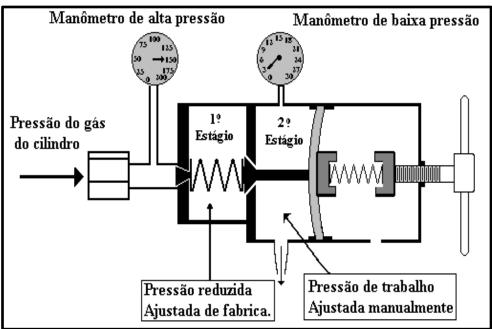
P= PRESSÃO MARCADA NO MANÔMETRO

DE ALTA PRESSÃO (PSI);

1000= CONSTANTE PSI

Todo manuseio, armazenamento adequado e inspeções periódicas são para evitar: ACIDENTES

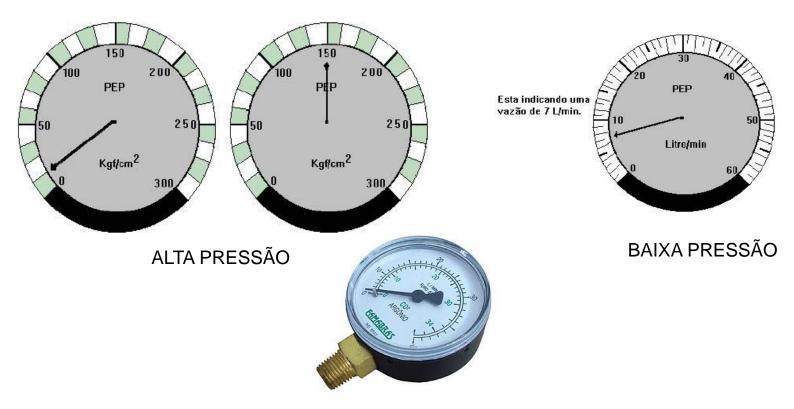




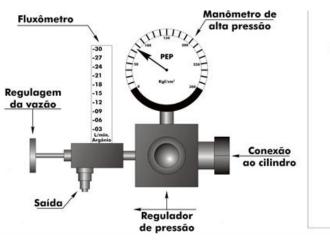
TIPOS DE REGULADORES DE PRESSÃO

Regulador de um estágio = Gases de baixas pressões (Acetileno e GLP).

Regulador de dois estágios = Gases de altas pressões (Ar, O₂, CO₂).



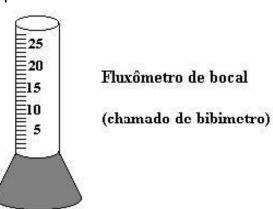
TIPOS DE REGULADORES DE PRESSÃO



MANÔMETROS

De **alta pressão** marca o conteúdo de gás contido no cilindro e sua unidade de medida é libras por polegada ao quadrado (lb./pol²) ou quilograma força por centímetro quadrado (kgf/cm²). O de **baixa pressão** em kgf/cm² ou litro por minuto, e serve para indicar a vazão de trabalho.

FLUXÔMETROS



Leitura por esfera	Leitura por pina
-30	-30
-27	-27
-24	-24
-21	-21
-18	-18
-15 [•]	-15
-12	-12
-09	-09₩
-06	-06
-03	-03
L/min. Argônio	L/min. Argônio

Fluxômetro de bocal

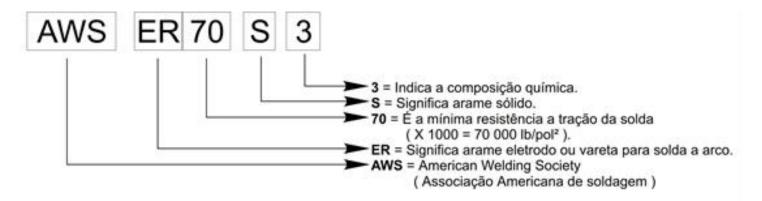
Serve para conferir se existe vazamento na canalização do gás e verificar se a vazão está conforme o procedimento.

METAIS DE ADIÇÃO

Os arames eletrodo usado no processo Mig/Mag pode ser ferroso e não ferrosos, sua escolha se faz de acordo ao material que vai ser soldado

Os materiais usados na confecção desses arames eletrodos são:

- Aço carbono
- Aço inoxidável
- Alumínio


Aço carbono ER 70S-6, Alumínio ER 4043, Inoxidável ER 308L e barrica Aço carbono ER 70S-6 de 150Kg – 300Kg

ARAMES DE ACORDO COM A NORMA AWS

CLASSIFICAÇÃO DA AWS - AMERICAN WELDING SOCIETY

Especificação "AWS"	Material a ser soldado	Especificação "AWS"	Material a ser soldado
A 5.7	Cobre e suas ligas	A 5.16	Titânio e suas ligas
A 5.9	Aço inox e aços alto Cr	A 5.18	Aço carbono e baixa liga
A 5.10	Alumínio e suas ligas	A 5.19	Magnésio e suas ligas
A 5.14	Níquel e suas ligas	A 5.28	Aços baixa liga
A 5.15	Ferros fundidos		

INTERPRETAÇÃO DA CLASSIFICAÇÃO DO ARAME CONFORME AWS

"S" = significa que o arame é sólido;

"T" = significa que o arame é tubular.

Exemplo: Arame eletrodo - AWS ER 70S - 3 AWS = Sociedade Americana de Soldagem

ER	= Arame eletrodo / arame ou vareta
70	= A resistência mínima da solda feita com esse arame eletrodo é de 70.000 lb/pol ²
S	= Sólido

X = Composição química do arame consultar tabela.

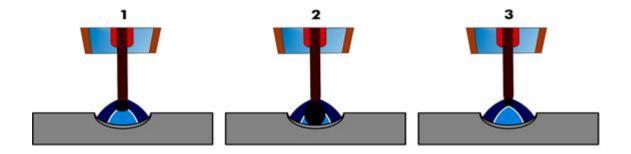
TABELA DAS COMPOSIÇÕES QUÍMICAS

Classificação "AWS"	С	Mn	Si	Р	s	Outros
ER 70 S-2	0,07 a 0,15	0,90 a 1,40	0,40 a 0,70	Máximo 0,025	Máximo 0,025	Ti - 0,05 a 0,15
ER 70 S-3	0,07 a 0,15	0,90 a 1,40	0,45 a 0,70	Máximo 0,025	Máximo 0,025	
ER 70 S-4	0,7 a 0,15	1,00 a 0,50	0,65 a 0,85	Máximo 0,025	Máximo 0,025	
ER 70 S-5	0,07 a 0,19	0,90 a 1,40	0,30 a 0,60	Máximo 0,025	Máximo 0,025	AI - 0,05 a 0,90
ER 70 S-6	0,07 a 0,15	1,40 a 1,85	0,80 a 1,15	Máximo 0,025	Máximo 0,025	
ER 70 S-7	0,07 a 0,15	1,50 a 2,00	0,50 a 0,80			

Obsevação:

C= Carbono, Mn = Manganês, Si = Silício, P= Fósforo, S= Enxofre, Zr = Zircônio

TIPOS DE TRANSFERÊNCIAS METÁLICAS


De uma forma simplificada, pode-se considerar que existem quatro modos distintos de transferência das gotas no arco:

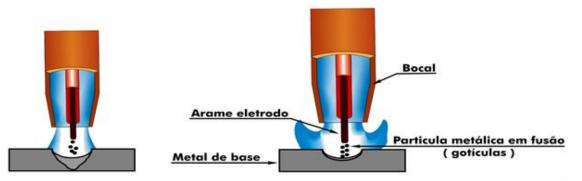
- Curto circuito.
- Globular.
- Spray (nevoa, Aerossol ou Gotículas).
- Arco Pulsado (Pulse Arc).

CURTO CIRCUITO (SHORT ARC)

A soldagem por curto-circuito é utilizada para soldagem em todas as posições, de materiais com espessura fina, passe de raiz, etc.

Neste processo usa-se tensão baixa e uma menor velocidade de alimentação do arame.

TIPOS DE TRANSFERÊNCIAS METÁLICAS GLOBULAR


A transferência por glóbulos (figura abaixo) processa-se por gotas grandes, maiores que o diâmetro do arame eletrodo. Ocorre com correntes baixas e altas tensões, arcos curtos e possui baixa velocidade de transferência.

Arame

Gotas em

SPRAY OU NÉVOA

Quando se deseja obter uma alta produtividade na soldagem de materiais espessos, utiliza-se o arco elétrico spray (névoa). Nesse caso, a tensão (voltagem) e a velocidade de alimentação do arame são mais elevadas do que em outros tipos de transferência.

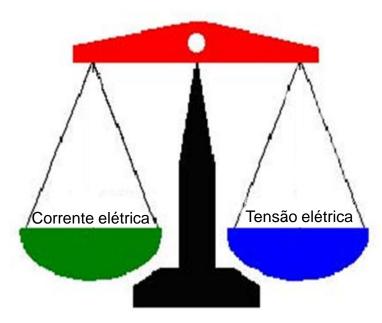
De acordo com estas características as variáveis de soldagem pelo processo MIG/MAG são divididas em três grupos:

- Pré Selecionadas (por observação do soldador).
- · Primárias.
- · Secundárias.

Pré-selecionadas

O que o soldador deve observar antes da soldagem, para que possa tomar as providencias com o serviço a ser executado.

- SEGURANÇA (AMBIENTE EM GERAL, PESSOAS AO REDOR, EPI'S.
- Tipo de material a soldar (aço carbono, inox, alumínio, etc).
- Espessura do material a soldar.
- Tipo de arame eletrodo (sólido ou tubular).
- Classe do arame eletrodo (aço carbono, aço inox, alumínio, etc).
- Diâmetro do arame eletrodo.
- Tipo de gás de proteção a usar, e sua vazão.
- Posição que vai ser realizada a soldagem.
- A qualidade esperada após a soldagem (AUTO INSPEÇÃO).



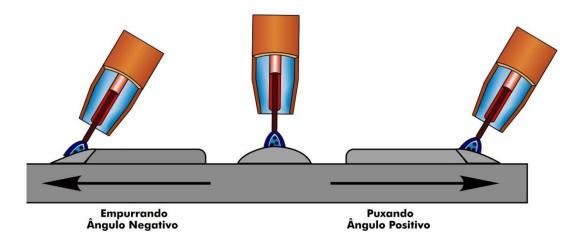
Variáveis Primárias


As variáveis mais importantes são:

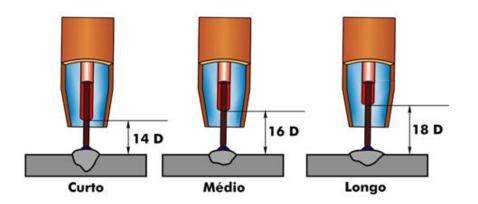
- A corrente de soldagem, (velocidade do arame eletrodo).
- A tensão de soldagem, (calor de arco elétrico).
- A velocidade de soldagem (avanço sobre a linha da solda).

Balanceadas

AJUSTAR OS PARÂMETROS DA FONTE PARA SE OBTER O MELHOR PERFIL DE SOLDA



Variáveis Secundárias


São as alterações feitas com a mão do soldador durante a soldagem.

Esta variável no processo semi-automático pode ser modificada durante a soldagem que são:

- Ângulo de inclinação do bocal.
- Altura do bico de contato a peça ou Stick-out.

Efeito da distância entre o bico de contato e a peça na corrente de soldagem e penetração da solda.

D= Diâmetro da arame em [mm].

Distância do bico	Causa	
Menor	Maior corrente	
Maior	Menor corrente	
Menor	Menor tensão	
Maior	Maior tensão	
Menor	Maior penetração	
Maior	Menor penetração	